Während mathematische Analyseverfahren mit inkonsistenten Daten zurechtkommen, ist bei Machine Learning große Datensorgfalt gefragt. Beide Methoden funktionieren sehr unterschiedlich und haben verschiedene Anforderungen und Anwendungszwecke. Worauf beim Einstieg in die Verwendung dieser Technologien in Bezug auf die Datengrundlage zu achten ist, lesen Sie hier.
Machine Learning: Garbage in, garbage out
Die Datenanalyse – oder auch „Data Analytics” – ist eine wichtige Säule der Digitalisierung. Ihr Lebenselixier ist nicht die größtmögliche Datenmenge, sondern die Güte der Eingangsdaten. Und genau hier liegt das Problem: Die Praxis zeigt, dass das verwendete Datenmaterial oft fehlerbehaftet oder unvollständig ist. Trotzdem starten viele Unternehmen mit Data Analytics durch. Doch macht das wirklich Sinn? Ja, wenn es sich um mathematische Analyseverfahren handelt. Nein, wenn es um Machine Learning geht.
Machine Learning verzeiht keine Datenprobleme
Alles was unter den Begriff „Machine Lea...
Dieser Beitrag kann kostenfrei gelesen werden, nachdem sich mit ihrem Account angemeldet wurde.
Noch kein uplifted Account? Dann hier kostenfrei registrieren:
... oder hier anmelden: